ECU Libraries Catalog

Long-lasting effects of mTBI on oculomotor ability and neuromuscular control / by Gustavo Sandri Heidner.

Author/creator Sandri Heidner, Gustavo author.
Other author/creatorMurray, Nicholas P., degree supervisor.
Other author/creatorEast Carolina University. Department of Kinesiology.
Format Theses and dissertations, Electronic, and Book
Publication Info [Greenville, N.C.] : [East Carolina University], 2022.
Description1 online resource (110 pages) : illustrations (chiefly color)
Supplemental Content Access via ScholarShip
Subject(s)
Summary Concussions result in short-lived to long-lasting neurological function impairment and disturbances, typically undetectable by standard neuroimaging protocols, which can persist for several months post-trauma. Eye-tracking and virtual reality can be a powerful tool in the assessment of short- and long-term concussed individuals. However, it needs a clear and concise methodology. When acting as an optical flow-induced perturbation of balance metrics and combined with electroencephalographic data, it can differentiate between a non-concussed fatigue state and a concussive state. Furthermore, when employed as a secondary cognitive task, it elicits neural modulations and postural control perturbations that can detect concussion-related impairments up to eight years post-trauma. In this dissertation we sought to (i) develop a virtual reality environment that implements known eye-tracking methodologies and validate its accuracy in differentiating between non-concussed and concussed cohorts, (ii) investigate the presence of neural signatures that could differentiate between a concussive state and a fatigue state, and (iii) determine if long-lasting oculomotor and peripheral muscle control impairments could be reliably detected in a concussed cohort several years post-trauma. Our overarching hypotheses were that (i) eye-tracking metrics observed in a virtual reality environment can differentiate between non-concussed and concussed cohorts, (ii) spectral power of cortical activations are different between non-concussed participants in a fatigued state and concussed participants, and (iii) oculomotor impairments and corticomuscular correlates of balance metrics can be detected in a concussed several months post-trauma. Our findings support the majority of the initial proposed investigation. We detected corticomuscular coherence and postural control differences capable of differentiating between non-concussed and long-term concussed participants, established a link between corticomuscular coherence and postural control adaptations observed in the concussed group, determined some limitations of virtual reality paradigms in concussion assessment.
General notePresented to the Faculty of the Department of Kinesiology
General noteAdvisor: Nicholas P. Murray
General noteTitle from PDF t.p. (viewed March 22, 2024).
Dissertation notePh. D. East Carolina University 2022
Bibliography noteIncludes bibliographical references.
Technical detailsSystem requirements: Adobe Reader.
Technical detailsMode of access: World Wide Web.
Genre/formdissertations.
Genre/formAcademic theses.
Genre/formAcademic theses.
Genre/formThèses et écrits académiques.

Available Items

Library Location Call Number Status Item Actions
Electronic Resources Access Content Online ✔ Available