ECU Libraries Catalog

Investigating the role of conserved cysteine residues in arabidopsis thaliana diacylglycerol acyltransferase 1 / by Matthew Pahl.

Author/creator Pahl, Matthew author.
Other author/creatorHorn, Patrick, degree supervisor.
Other author/creatorEast Carolina University. Department of Biology.
Format Theses and dissertations, Electronic, and Book
Publication Info [Greenville, N.C.] : [East Carolina University], 2021.
Description1 online resource (71 pages) : color illustrations
Supplemental Content Access via ScholarShip
Subject(s)
Summary Triacylglycerols (TAGs) are biomolecules found in all organisms comprised of three fatty acid chains esterified to a glycerol backbone. In humans, TAGs are important energy storage reserves whose misregulation are associated with diseases such as obesity, diabetes, and heart disease. TAGs are also important for plant growth and development, in particular for seed lipid (or oil) reserves, as decreased TAG production is associated with poor quality seeds incapable of germination. As extractable chemical feedstocks, TAGs are a major component of biodiesel production, a green fuel source that is domestically produced and burns cleaner than typical petroleum-based fuels. Biochemically, the most common and rate-limiting final step for generating TAGs requires a diacylglycerol acyltransferase (DGAT) enzyme. This enzyme esterifies a fatty acyl-CoA to a diacylglycerol molecule. Despite its importance, the membrane-spanning topology and hydrophobicity of DGATs has prevented determination of its three-dimensional structure until recently. Plant DGAT enzymes contain cysteine-associated motifs (e.g. CXXXXC) that are reminiscent of redox-regulated switches and may be important for DGAT structure/activity (and therefore TAG accumulation). We have performed site-directed mutagenesis on several highly conserved cysteines and tested the associated lipid production levels in the model systems yeast, tobacco, and Arabidopsis thaliana. The lipid amounts and compositions produced from the mutated enzymes, along with protein amounts from western blots, were compared to the wild-type to determine how the cysteine mutations affect DGAT-catalyzed TAG production. This study will inform the strategic bioengineering of DGATs that could lead to improvements in biodiesel production, animal feed, and specialized dietary supplements produced by oleaginous plants or microorganisms.
General notePresented to the faculty of the Department of Biology
General noteAdvisor: Patrick Horn
General noteTitle from PDF t.p. (viewed September 14, 2022).
Dissertation noteM.S. East Carolina University 2021
Bibliography noteIncludes bibliographical references.
Technical detailsSystem requirements: Adobe Reader.
Technical detailsMode of access: World Wide Web.
Genre/formAcademic theses.
Genre/formAcademic theses.
Genre/formThèses et écrits académiques.

Available Items

Library Location Call Number Status Item Actions
Electronic Resources Access Content Online ✔ Available