ECU Libraries Catalog

Green chemistry and engineering : a practical design approach / Concepción Jiménez-González, David J. C. Constable.

Author/creator Jiménez-González, Concepción Conchita
Other author/creatorConstable, David, 1958-
Format Book and Print
Publication InfoHoboken, NJ : Wiley, ©2011.
Descriptionxiii, 680 pages : illustrations ; 27 cm
Subject(s)
Contents Machine generated contents note: pt. I GREEEN CHEMISTRY AND GREEN ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY -- 1.Green Chemistry and Engineering in the Context of Sustainability -- 1.1.Why Green Chemistry? -- 1.2.Green Chemistry, Green Engineering, and Sustainability -- 1.3.Until Death Do Us Part: A Marriage of Disciplines -- Problems -- References -- 2.Green Chemistry and Green Engineering Principles -- 2.1.Green Chemistry Principles -- 2.2.Twelve More Green Chemistry Principles -- 2.3.Twelve Principles of Green Engineering -- 2.4.The San Destin Declaration: Principles of Green Engineering -- 2.5.Simplifying the Principles -- Problems -- References -- 3.Starting with the Basics: Integrating Environment, Health, and Safety -- 3.1.Environmental Issues of Importance -- 3.2.Health Issues of Importance -- 3.3.Safety Issues of Importance -- 3.4.Hazard and Risk -- 3.5.Integrated Perspective on Environment, Health, and Safety -- Problems -- References -- 4.How Do We Know It's Green? A Metrics Primer -- 4.1.General Considerations About Green Chemistry and Engineering Metrics -- 4.2.Chemistry Metrics -- 4.3.Process Metrics -- 4.4.Cost Implications and Green Chemistry Metrics -- 4.5.A Final Word on Green Metrics -- Problems -- References -- pt. II THE BEGINNING: DESIGNING GREENER, SAFER CHEMICAL SYNTHESES -- 5.Route and Chemistry Selection -- 5.1.The Challenge of Synthetic Chemistry -- 5.2.Making Molecules -- 5.3.Using Different Chemistries -- 5.4.Route Strategy -- 5.5.Protection-Deprotection -- 5.6.Going from a Route to a Process -- Problems -- References -- 6.Material Selection: Solvents, Catalysts, and Reagents -- 6.1.Solvents and Solvent Selection Strategies -- 6.2.Catalysts and Catalyst Selection Strategies -- 6.3.Other Reagents -- Problems -- References -- 7.Reaction Conditions and Green Chemistry -- 7.1.Stoichiometry -- 7.2.Design of Experiments -- 7.3.Temperature -- 7.4.Solvent Use -- 7.5.Solvents and Energy Use -- 7.6.Reaction and Processing Time -- 7.7.Order and Rate of Reagent Addition -- 7.8.Mixing -- Appendix 7.1 Common Practices in Batch Chemical Processing and Their Green Chemistry Impacts -- Problems -- References -- 8.Bioprocesses -- 8.1.How Biotechnology Has Been Used -- 8.2.Are Bioprocesses Green? -- 8.3.What Is Involved in Bioprocessing -- 8.4.Examples of Products Obtained from Bioprocessing -- Problems -- References -- pt. III FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE MANUFACTURING PROCESSES -- 9.Mass and Energy Balances -- 9.1.Why We Need Mass Balances, Energy Balances, and Process Flow Diagrams -- 9.2.Types of Processes -- 9.3.Process Flow Diagams -- 9.4.Mass Balances -- 9.5.Energy Balances -- 9.6.Measuring Greenness of a Process Through Energy and Mass Balances -- Problems -- References -- 10.The Scale-up Effect -- 10.1.The Scale-up Problem -- 10.2.Factors Affecting Scale-up -- 10.3.Scale-up Tools -- 10.4.Numbering-up vs. Scaling-up -- Problems -- References -- 11.Reactors and Separations -- 11.1.Reactors and Separations in Green Engineering -- 11.2.Reactors -- 11.3.Separations and Other Unit Operations -- 11.4.Batch vs. Continuous Processes -- 11.5.Does Size Matter? -- Problems -- References -- 12.Process Synthesis -- 12.1.Process Synthesis Background -- 12.2.Process Synthesis Approaches and Green Engineering -- 12.3.Evolutionary Techniques -- 12.4.Heuristics Methods -- 12.5.Hierarchical Decomposition -- 12.6.Superstructure and Multiobjective Optimization -- 12.7.Synthesis of Subsystems -- Problems -- References -- 13.Mass and Energy Integration -- 13.1.Process Integration: Synthesis, Analysis, and Optimization -- 13.2.Energy Integration -- 13.3.Mass Integration -- Problems -- References -- 14.Inherent Safety -- 14.1.Inherent Safety vs. Traditional Process Safety -- 14.2.Inherent Safety and Inherently Safer Design -- 14.3.Inherent Safety in Route Strategy and Process Design -- 14.4.Conclusions on Inherent Safety -- Problems -- References -- 15.Process Intensification -- 15.1.Process Intensification Background -- 15.2.Process Intensification Technologies -- 15.3.Process Intensification Techniques -- 15.4.Perspectives on Process Intensification -- Problems -- References -- pt. IV EXPANDING THE BOUNDARIES -- 16.Life Cycle Inventory and Assessment Concepts -- 16.1.Life Cycle Inventory and Assessment Background -- 16.2.LCI/A Methodology -- 16.3.Interpretation: Making Decisions with LCI/A -- 16.4.Streamlined Life Cycle Assessment -- Problems -- References -- 17.Impacts of Materials and Procurement -- 17.1.Life Cycle Management -- 17.2.Where Chemical Trees and Supply Chains Come From -- 17.3.Green (Sustainable) Procurement -- 17.4.Transportation Impacts -- Problems -- References -- 18.Impacts of Energy Requirements -- 18.1.Where Energy Comes From -- 18.2.Environmental Life Cycle Emissions and Impacts of Energy Generation -- 18.3.From Emissions to Impacts -- 18.4.Energy Requirements for Waste Treatment -- Problems -- References -- 19.Impacts of Waste and Waste Treatment -- 19.1.Environmental Fate and Effects Data -- 19.2.Environmental Fate Information: Physical Properties -- 19.3.Environmental Fate Information: Transformation and Depletion Mechanisms -- 19.4.Environmental Effects Information -- 19.5.Environmental Risk Assessment -- 19.6.Environmental Life Cycle Impacts of Waste Treatment -- Problems -- References -- 20.Total Cost Assessment -- 20.1.Total Cost Assessment Background -- 20.2.Importance of Total Cost Assessment -- 20.3.Relationship Between Life Cycle Inventory/Assessment and Total Cost Assessment -- 20.4.Timing of a Total Cost Assessment -- 20.5.Total Cost Assessment Methodology -- 20.6.Total Cost Assessment in a Green Chemistry Context -- Problems -- References -- pt. V WHAT LIES AHEAD -- 21.Emerging Materials -- 21.1.Emerging Materials Development -- 21.2.Nanomaterials -- 21.3.Bioplastics and Biopolymers -- 21.4.About New Green Materials -- Problems -- References -- 22.Renewable Resources -- 22.1.Why We Need Renewable Resources -- 22.2.Renewable Materials -- 22.3.The Biorefinery -- 22.4.Renewable Energy -- Problems -- References -- 23.Evaluating Technologies -- 23.1.Why We Need to Evaluate Technologies and Processes Comprehensively -- 23.2.Comparing Technologies and Processes -- 23.3.One Way to Compare Technologies -- 23.4.Trade-Offs -- 23.5.Advantages and Limitations of Comparing Technologies -- Problems -- References -- 24.Industrial Ecology -- 24.1.Industrial Ecology Background -- 24.2.Principles and Concepts of Industrial Ecology and Design -- 24.3.Industrial Ecology and Design -- 24.4.Industrial Ecology in Practice -- Problems -- References -- 25.Tying It All Together: Is Sustainability Possible? -- 25.1.Can Green Chemistry and Green Engineering Enable Sustainability? -- 25.2.Sustainability: Culture and Policy -- 25.3.Influencing Sustainability -- 25.4.Moving to Action -- Problems -- References.
Summary This text bridges the divide between bench chemistry, process design, engineering, environment, health, safety and life cycle considerations. The authors use a systems-oriented and integrated approach to evolve green chemistry and green engineering as disciplines in the broader context of sustainability.
Bibliography noteIncludes bibliographical references and index.
LCCN 2010003431
ISBN9780470170878 (cloth)
ISBN0470170875 (cloth)

Available Items

Library Location Call Number Status Item Actions
Joyner General Stacks TP155.2.E58 J56 2011 ✔ Available Place Hold