ECU Libraries Catalog

The light fantastic : a modern introduction to classical and quantum optics / I.R. Kenyon.

Author/creator Kenyon, I. R.
Format Book and Print
Edition2nd ed.
Publication InfoOxford ; New York : Oxford University Press, 2011.
Descriptionxxi, 710 pages : illustrations ; 26 cm
Subject(s)
Contents Machine generated contents note: 1. Introduction -- 1.1. Aims and overview -- 1.2. Electromagnetic waves -- 1.3. The velocity of light -- 1.4. A brief outline of electromagnetic wave theory -- 1.4.1. More general waveforms -- 1.5. The electromagnetic spectrum -- 1.5.1. Visible spectra -- 1.6. Absorption and dispersion -- 1.7. Radiation terminology -- 1.8. Black body radiation -- 1.9. Doppler shift -- 1.10. Waveform conventions -- 2. Reflection and refraction at plane surfaces -- 2.1. Light rays and Huygens' principle -- 2.1.1. The laws of reflection -- 2.1.2. Snell's law of refraction -- 2.1.3. Fermat's principle -- 2.1.4. Simple imaging -- 2.1.5. Deviation of light by a triangular prism -- 2.2. Total internal reflection -- 2.2.1. Constant deviation prism -- 2.2.2. Porro prisms -- 2.2.3. Corner cube reflector -- 2.2.4. Pulfrich refractometer -- 2.3. Optical fibre -- 2.4. Micromirror projector -- 3. Spherical mirrors and lenses -- 3.1. Introduction -- 3.1.1. Cartesian sign convention
Contents 3.2. Spherical mirrors -- 3.2.1. Ray tracing for mirrors -- 3.3. Refraction at a spherical interface -- 3.4. Thin lens equation -- 3.4.1. Ray tracing for lenses -- 3.4.2. Magnifiers -- 3.5. Matrix methods for paraxial optics -- 3.5.1. The equivalent thin lens -- 3.6. Aberrations -- 3.6.1. Monochromatic aberrations -- 3.6.2. Spherical aberration -- 3.6.3. Coma -- 3.6.4. Astigmatism -- 3.6.5. Field curvature -- 3.6.6. Distortion -- 3.6.7. Chromatic aberration -- 3.7. Further reading -- 4. Optical instruments -- 4.1. Introduction -- 4.2. The refracting telescope -- 4.2.1. Field of view -- 4.2.2. Etendue -- 4.3. Telescope objectives and eyepieces -- 4.4. The microscope -- 4.5. Cameras -- 4.5.1. Camera lens design -- 4.5.2. SLR camera features -- 4.5.3. Telecentric lenses -- 4.5.4. Telephoto lenses -- 4.5.5. Zoom lenses -- 4.6. Graded index lenses -- 4.7. Aspheric lenses -- 4.8. Fresnel lenses -- 5. Interference effects and interferometers -- 5.1. Introduction -- 5.2. The superposition principle -- 5.3. Young's two slit experiment
Contents 5.3.1. Fresnel's analysis -- 5.3.2. Interference by amplitude division -- 5.4. Michelson's interferometer -- 5.4.1. The constancy of c -- 5.5. Coherence and wavepackets -- 5.5.1. The frequency content of wavepackets -- 5.5.2. Optical beats -- 5.5.3. Coherence area -- 5.6. Stokes' relations -- 5.7. Interferometry -- 5.7.1. The Twyman-Green interferometer -- 5.7.2. The Fizeau interferometer -- 5.7.3. The Mach-Zehnder interferometer -- 5.7.4. The Sagnac interferometer -- 5.8. Standing waves -- 5.9. The Fabry-Perot interferometer -- 6. Diffraction -- 6.1. Introduction -- 6.2. Huygens-Fresnel analysis -- 6.3. Single slit Fraunhofer diffraction -- 6.4. Diffraction at a rectangular aperture -- 6.5. Diffraction from multiple identical slits -- 6.6. Babinet's principle -- 6.7. Fraunhofer diffraction at a circular hole -- 6.8. Diffraction gratings -- 6.9. Spectrometers and spectroscopes -- 6.9.1. Grating structure -- 6.9.2. Etendue -- 6.9.3. Czerny-Turner spectrometer -- 6.9.4. Littrow mounting -- 6.9.5. Echelle grating
Contents 6.9.6. Automated spectrometers -- 6.10. Fresnel and Fraunhofer diffraction -- 6.11. Single slit Fresnel diffraction -- 6.11.1. Lunar occupation -- 6.12. Fresnel diffraction at screens with circular symmetry -- 6.12.1. Zone plates -- 6.13. Microprocessor lithography -- 6.14. Near field diffiraction -- 6.15. Gaussian beams -- 6.15.1. Matrix methods -- 7. Fourier optics -- 7.1. Introduction -- 7.2. Fourier analysis -- 7.2.1. Complex field usage -- 7.2.2. Diffraction and convolution -- 7.3. Coherence and correlations -- 7.3.1. Power spectra -- 7.3.2. Fourier transform spectrometry -- 7.3.3. Line width and bandwidth -- 7.4. Image formation and spatial transforms -- 7.5. Spatial filtering -- 7.5.1. Schlieren photography -- 7.5.2. Apodization -- 7.6. Acousto-optic Bragg gratings -- 7.6.1. Microwave spectrum analysis -- 7.7. Holography -- 7.7.1. Principles of holography -- 7.7.2. Hologram preparation -- 7.7.3. Motion and vibration analysis -- 7.7.4. Thick holograms -- 7.8. Optical information processing -- 7.8.1. The 4f architecture
Contents 7.8.2. Data storage and retrieval -- 8. Astronomical telescopes -- 8.1. Introduction -- 8.2. Telescope design -- 8.2.1. Auxiliary equipment -- 8.3. Schmidt camera -- 8.4. Atmospheric turbulence -- 8.5. Adaptive optics -- 8.5.1. Lucky imaging -- 8.6. Michelson's stellar interferometer -- 8.7. Modern interferometers -- 8.8. Aperture synthesis -- 8.9. Aperture arrays -- 8.10. Image recovery -- 8.11. Comparisons with radioastronomy -- 8.12. Gravitational wave detectors -- 8.12.1. Laser-cavity locking -- 8.12.2. Noise sources -- 8.13. Gravitational imaging -- 9. Classical electromagnetic theory -- 9.1. Introduction -- 9.2. Maxwell's equations -- 9.3. The wave equation -- 9.3.1. Energy storage and energy flow -- 9.4. Electromagnetic radiation -- 9.5. Reflection and refraction -- 9.6. Fresnel's equations -- 9.7. Interference filters -- 9.7.1. Analysis of multiple parallel plane layers -- 9.7.2. Beam splitters -- 9.8. Modes of the electromagnetic field -- 9.8.1. Mode counting -- 9.9. Planar waveguides -- 9.9.1. The prism coupler
Contents 10. Polarization -- 10.1. Introduction -- 10.2. States of polarization -- 10.3. Dichroism and Malus' law -- 10.4. Birefringence -- 10.4.1. Analysis of birefringence -- 10.4.2. The index ellipsoid -- 10.4.3. Energy flow and rays -- 10.4.4. Huygens' construction -- 10.5. Wave plates -- 10.5.1. Jones vectors and matrices -- 10.5.2. Prism separators -- 10.5.3. Polarizing beam splitters and DVD readers -- 10.6. Optical activity -- 10.7. Effects of applied electromagnetic fields -- 10.7.1. Pockels effect and modulators -- 10.7.2. Kerr effect -- 10.7.3. Faraday effect -- 10.8. Liquid crystals -- 10.8.1. The twisted nematic LCD -- 10.8.2. In-plane switching -- 10.8.3. Polymer dispersed liquid crystals (PDLC) -- 10.8.4. Ferroelectric liquid crystals (FELC) -- 10.9. Further reading -- 11. Scattering, absorption and dispersion -- 11.1. Introduction -- 11.2. Rayleigh scattering -- 11.2.1. Coherent scattering -- 11.3. Mie scattering -- 11.4. Absorption -- 11.5. Dispersion and absorption -- 11.5.1. The atomic oscillator model
Contents 11.6. Metallic absorption and reflection -- 11.6.1. Plasmas in metals -- 11.6.2. Group and signal velocity -- 11.6.3. Surface plasma waves -- 11.7. Further reading -- 12. The quantum nature of light and matter -- 12.1. Introduction -- 12.2. The black body spectrum -- 12.3. The photoelectric effect -- 12.4. The Compton effect -- 12.5. de Broglie's hypothesis -- 12.6. The Bohr model of the atom -- 12.6.1. Beyond hydrogen -- 12.6.2. Weaknesses of the Bohr model -- 12.7. Wave-particle duality -- 12.8. The uncertainty principle -- 12.9. Which path information -- 12.10. Wavepackets and modes -- 12.10.1. Etendue -- 12.11. Afterword -- 12.12. Further reading -- 13. Quantum mechanics and the atom -- 13.1. Introduction -- 13.2. An outline of quantum mechanics -- 13.3. Schroedinger's equation -- 13.3.1. The square potential well -- 13.4. Eigenstates -- 13.4.1. Orthogonality of eigenstates -- 13.5. Expectation values -- 13.5.1. Collapse of the wavefunction -- 13.5.2. Compatible or simultaneous observables -- 13.6. The harmonic oscillator potential
Contents 13.7. The hydrogen atom -- 13.8. The Stern-Gerlach experiment -- 13.9. Electron spin -- 13.10. Multi-electron atoms -- 13.10.1. Resonance fluorescence -- 13.10.2. Atoms in constant fields -- 13.11. Photon momentum and spin -- 13.12. Quantum statistics -- 13.13. Line widths and decay rates -- 13.14. Further reading -- 14. Lasers -- 14.1. Introduction -- 14.2. The Einstein coefficients -- 14.3. Prerequisites for lasing -- 14.4. The He:Ne laser -- 14.4.1. Three and four level lasers -- 14.4.2. Gain -- 14.4.3. Cavity modes -- 14.4.4. Hole burning -- 14.4.5. Laser speckles -- 14.4.6. Optical beats -- 14.5. The CO2 gas laser -- 14.6. Organic dye lasers -- 14.6.1. Saturation spectroscopy -- 14.6.2. Cavity ring-down spectroscopy -- 14.6.3. A heterodyne laser interferometer -- 14.7. Introducing semiconductors -- 14.7.1. Double heterostructure lasers -- 14.7.2. DFB lasers -- 14.7.3. Limiting line widths -- 14.8. Quantum well lasers -- 14.8.1. Vertical cavity lasers -- 14.9. Nd:YAG and Nd:glass lasers -- 14.9.1. Q switching -- 14.10. Ti:sapphire lasers
Contents 14.11. Optical Kerr effect and mode locking -- 14.11.1. Mode locking -- 14.12. Frequency combs -- 14.12.1. Optical frequency measurement -- 14.13. Extreme energies -- 14.14. Second order non-linear effects -- 14.14.1. Raman scattering -- 14.14.2. Brillouin scattering -- 14.14.3. Stimulated Raman and Brillouin scattering -- 14.15. Further reading -- 15. Detectors -- 15.1. Introduction -- 15.2. Photoconductors -- 15.3. Photodiodes -- 15.3.1. Dark current -- 15.4. Photodiode response -- 15.4.1. Speed of response -- 15.4.2. Noise -- 15.4.3. Amplifiers -- 15.4.4. Solar cells -- 15.5. Avalanche photodiodes -- 15.6. Schottky photodiodes -- 15.7. Imaging arrays -- 15.7.1. Quantum efficiency and colour -- 15.7.2. CCD readout -- 15.7.3. Noise and dynamic range -- 15.7.4. EM-CCDs -- 15.7.5. CMOS arrays
Contents Note continued: 15.8. Photomultipliers -- 15.8.1. Counting and timing -- 15.9. Microchannel plates and image intensifiers -- 15.10. Further reading -- 16. Optical fibres -- 16.1. Introduction -- 16.2. Attenuation in optical fibre -- 16.3. Guided waves -- 16.4. Fibre types and dispersion properties -- 16.5. Signalling -- 16.6. Sources and detectors -- 16.7. Connectors and routing devices -- 16.7.1. Directional couplers -- 16.7.2. Circulators -- 16.7.3. MMI devices -- 16.8. Link noise and power budget -- 16.9. Long haul links -- 16.9.1. Fibre amplifiers -- 16.9.2. Dispersion compensation -- 16.10. Multiplexing -- 16.10.1. Thin film filters and Bragg gratings -- 16.10.2. Array waveguide gratings -- 16.10.3. MEMS -- 16.11. Solitons -- 16.11.1. Communication using solitons -- 16.12. Fibre optic sensors -- 16.12.1. Fibre Bragg sensors -- 16.12.2. The fibre optic gyroscope -- 16.13. Optical current transformer
Contents 16.14. Further reading -- 17. Photonic crystals -- 17.1. Introduction -- 17.2. Bloch waves -- 17.3. Dispersion relations -- 17.3.1. Off-axis beams -- 17.4. Two-dimensional photonic crystals -- 17.4.1. Two-dimensional band-gaps -- 17.5. Photonic crystal slabs -- 17.5.1. Slow light -- 17.5.2. Anomalous refraction effects -- 17.5.3. LED emission -- 17.6. Photonic crystal fibres -- 17.7. Three-dimensional photonic crystals -- 17.8. Further reading -- 18. Quantum interactions -- 18.1. Introduction -- 18.2. Transition rates -- 18.2.1. Selection rules -- 18.2.2. Electric susceptibility -- 18.3. Rabi oscillations -- 18.4. Dressed states -- 18.4.1. Mollow fluorescence -- 18.4.2. The Autler-Townes effect -- 18.5. Electromagnetically induced transparency -- 18.5.1. Slow light -- 18.6. Trapping and cooling ions -- 18.7. Shelving -- 18.8. Optical clocks -- 18.9. Further reading -- 19. The quantized electromagnetic field -- 19.1. Introduction -- 19.2. Second quantization
Contents 19.2.1. Continuous variables -- 19.3. First order coherence -- 19.4. Second order coherence -- 19.5. Laser light and thermal light -- 19.5.1. Coherent (laser-like) states -- 19.5.2. Thermal light -- 19.6. Observations of photon correlations -- 19.6.1. Stellar correlation interferometer -- 19.7. Entangled states -- 19.7.1. Beam splitters -- 19.7.2. Spontaneous parametric down conversion -- 19.8. The HOM interferometer -- 19.9. Franson-Chiao interferometry -- 19.10. Complementarity -- 19.10.1. Delayed choice and quantum erasure -- 19.11. Transition rates -- 19.12. Further reading -- 20. Quantum dots, optical cavities and cryptography -- 20.1. Introduction -- 20.2. Quantum dots -- 20.2.1. Rabi oscillations involving quantum dots -- 20.3. Optical microcavities -- 20.4. Strong and weak coupling -- 20.5. Rabi oscillations in cavities -- 20.6. Weak coupling -- 20.6.1. Cavity Purcell factors -- 20.7. Quantum cryptography -- 20.7.1. Microcavity diode -- 20.8. Further reading.
Bibliography noteIncludes bibliographical references and index.
LCCN 2011288682 2010931622
ISBN9780199584611 (hbk.)
ISBN0199584613 (hbk.)
ISBN9780199584604 (pbk.)
ISBN0199584605 (pbk.)

Available Items

Availability data is currently unavailable.